Lompat ke konten Lompat ke sidebar Lompat ke footer

Soal Hots Sejarah Indonesia Kelas Xii


Soal Hots Sejarah Indonesia Kelas Xii

bantu dong sejarah indonesia kelas xii tentang sumber benda bersejarah

1. bantu dong sejarah indonesia kelas xii tentang sumber benda bersejarah


Jawaban:

B. bustanussalatin karya Nuruddin ar - raniri

Penjelasan:

maafkalausalahya


2. membuat teks cerita sejarah bahasa indonesia kelas XII


ejarah Singkat Proklamasi Kemerdekaan Indonesia 
Indonesia merdeka tidak begitu saja, akan tetapi melalui proses yang membutuhkan keberanian dari para pahlawan untuk mewujudkannya dalam proklamasi kemerdekaan.

Pada tanggal 6 Agustus 1945 sebuah bom atom dijatuhkan di atas kota Hiroshima Jepang oleh Amerika Serikat yang mulai menurunkan moral semangat tentara Jepang di seluruh dunia. Kemudian pada tanggal 9 Agustus 1945, bom atom kedua dijatuhkan di atas Nagasaki sehingga menyebabkan Jepang menyerah kepada Amerika Serikat dan sekutunya. Momen ini pun dimanfaatkan oleh Indonesia untuk memproklamasikan kemerdekaannya. Soekarno, Hatta dan Radjiman Wedyodiningrat diterbangkan ke Dalat, 250 km di sebelah timur laut Saigon, Vietnam untuk bertemu Marsekal Terauchi. Mereka dikabarkan bahwa pasukan Jepang sedang di ambang kekalahan dan akan memberikan kemerdekaan kepada Indonesia.

Pada tanggal 10 Agustus 1945, Sutan Syahrir telah mendengar berita lewat radio bahwa Jepang telah menyerah kepada Sekutu. Para pejuang bawah tanah bersiap-siap memproklamasikan kemerdekaan RI, dan menolak bentuk kemerdekaan yang diberikan sebagai hadiah Jepang.

Pada tanggal 12 Agustus 1945, Jepang melalui Marsekal Terauchi di Dalat, Vietnam, mengatakan kepada Soekarno, Hatta dan Radjiman bahwa pemerintah Jepang akan segera memberikan kemerdekaan kepada Indonesia dan proklamasi kemerdekaan dapat dilaksanakan dalam beberapa hari, tergantung cara kerja PPKI. Meskipun demikian Jepang menginginkan kemerdekaan Indonesia pada tanggal 24 Agustus.

Dua hari kemudian, saat Soekarno, Hatta dan Radjiman kembali ke tanah air dari Dalat, Sutan Syahrir mendesak agar Soekarno segera memproklamasikan kemerdekaan karena menganggap hasil pertemuan di Dalat sebagai tipu muslihat Jepang, Soekarno belum yakin bahwa Jepang memang telah menyerah, dan proklamasi kemerdekaan RI saat itu dapat menimbulkan pertumpahan darah yang besar, dan dapat berakibat sangat fatal jika para pejuang Indonesia belum siap.

Pada tanggal 14 Agustus 1945 Jepang menyerah kepada Sekutu. Tentara dan Angkatan Laut Jepang masih berkuasa di Indonesia karena Jepang telah berjanji akan mengembalikan kekuasaan di Indonesia ke tangan Sekutu. Setelah mendengar desas-desus Jepang bakal bertekuk lutut, golongan muda mendesak golongan tua untuk segera memproklamasikan kemerdekaan Indonesia. Namun golongan tua tidak ingin terburu-buru. Mereka tidak menginginkan terjadinya pertumpahan darah pada saat proklamasi. Konsultasi pun dilakukan dalam bentuk rapat PPKI. Golongan muda tidak menyetujui rapat itu, mengingat PPKI adalah sebuah badan yang dibentuk oleh Jepang. Mereka menginginkan kemerdekaan atas usaha bangsa kita sendiri, bukan pemberian Jepang.

Soekarno dan Hatta bersama Soebardjo kemudian ke kantor Bukanfu, Laksamana Maeda, di Jalan Imam Bonjol no.1. Maeda menyambut kedatangan mereka dengan ucapan selamat atas keberhasilan mereka di Dalat. Sambil menjawab ia belum menerima konfirmasi serta masih menunggu instruksi dari Tokyo. Keesokan harinya Soekarno dan Hatta segera mempersiapkan pertemuan Panitia Persiapan Kemerdekaan Indonesia (PPKI) pada pukul 10 pagi 16 Agustus guna membicarakan segala sesuatu yang berhubungan dengan persiapan Proklamasi Kemerdekaan.

Sehari kemudian, gejolak tekanan yang menghendaki pengambilalihan kekuasaan oleh Indonesia makin memuncak dilancarkan para pemuda dari beberapa golongan. Rapat PPKI pada 16 Agustus pukul 10 pagi tidak dilaksanakan karena Soekarno dan Hatta tidak muncul. Peserta rapat tidak tahu telah terjadi peristiwa Rengasdengklok.



3. soal bahasa indonesia kelas XII semester 1


"Tuntutan kaum buruh ini bermula sejak era industri awal abad ke-19"
jika diperhatikan konjungsinya pernyataan tersebut merupakan kalimat...

a.simpleks
b.kompleks
c.imperatif
d.interogatif
e.tak langsung"Tuntutan kaum buruh ini bermula sejak era industri awal abad ke-19" jika diperhatikan konjungsinya pernyataan tersebut merupakan kalimat... a.simpleks b.kompleks c.imperatif d.interogatif e.tak langsung Maaf klo slh

4. soal integral kelas xii


PERTANYAAN
1. ∫ (4x+2) (5 - 1/2 x) dx = ...
2. Diketahui F'(x) = 3x^2+4x-5 dan F(2) = 18. Jika F'(x) adalah turunan pertama F(x), maka persamaan F(x)

JAWABAN

1) ∫ (4x+2) (5 - ½x) dx
= ∫ (-2x² + 19x + 10) dx
= -(2/3)x³ + (19/2)x² + 10x + c

2) F'(x) = 3x^2+4x-5
F(x) = ∫ (3x² + 4x – 5) dx
= x³ + 2x – 5x + c
F(2) = 2³ + 2(2) – 5(2) + c = 18
8 + 4 – 10 + c = 18
c = 16
F(x) = x³ + 2x – 5x + 16

yang mananyaa yg mau dikerjain?-__-
kalo masalah integral itu invers dari turunan laah..
seperti [tex] \int\limits^a_b f({x}) \ dx = F(x) + C[/tex]
f'x= f(x)
Jadi kalo masalah integral sin cos ituu, pakai rumus integral fungsi trigonometri:
saya beri satu contoh saja yaah..
integral sinx dx = -cosx+C

[tex] \int\limits^ \frac{3 \pi }{4} _b(2-4sin ^{2} {x}) \, dx = 2-4 sin^{2} x = 2-4(1- \frac{cos2x}{2}) = 2- 2(1-cos2x) = 2cos2x[/tex]
ituu saja yaa contohnyaa

5. Mengapa periode demokrasi parlementer di Indonesia oleh Wilopo disebutnya sebagai zaman pemerintahan partai-partai? Sejarah Indonesia Kelas XII


Penjelasan:

Karena demokrasi parlementer oleh Wilopo memiliki program kerja yang lebih mendapatkan perhatian dari masyarakat, dari program kerja persiapan pemilu hingga pelaksanaan politik bebas aktif serta pelengkapan UU Pembaharuan menjadikan prokernya persuasif.

Selain daripada itu, tantangan yang dihadapi Wilopo untuk menuntaskan "Peristiwa 17 Oktober" dan Peristiwa Morawa"


6. bantuan dan manfaat pbb sejarah kelas XII


a.memelihara perdamaian dan keamanan internasional .
b.bekerjasama secara internasional untuk memecahkan persoalan persoalan ekonomi
c.mengembangkan hubungan hubungan perasaudaraan atara bangsa bangsa

7. organisasi organisasi global dan regional sejarah kelas XII


Global:
pbb,opec,oki,gnb
regional:
kaa,asean,apec,mee,gatt,nafta,cafta,cafta dr,

8. soal limitkelas XII​


[tex]Nilai~dari~\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}~adalah~\boldsymbol{1}.[/tex]

PEMBAHASAN

Nilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :

[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]

Operasi pada limit adalah sebagai berikut :

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]

[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]

[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]

Rumus untuk limit fungsi trigonometri :

[tex]\lim_{x \to 0} \frac{sinax}{bx}=\lim_{x \to 0} \frac{tanax}{bx}=\frac{a}{b}[/tex]

[tex]\lim_{x \to 0} \frac{ax}{sinbx}=\lim_{x \to 0} \frac{ax}{tanbx}=\frac{a}{b}[/tex]

[tex]\lim_{x \to a} \frac{sin(x-a)}{(x-a)}=\lim_{x \to a} \frac{tan(x-a)}{(x-a)}=1[/tex]

.

DIKETAHUI

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=[/tex]

.

DITANYA

Tentukan nilai limitnya.

.

PENYELESAIAN

Cek dengan substitusi langsung.

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4(\frac{\pi}{2}-\pi)cos^2(\frac{\pi}{2})}{\pi(\pi-2(\frac{\pi}{2}))tan(\frac{\pi}{2}-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{0}{0}[/tex]

.

Karena substitusi langsung menghasilkan bentuk tak tentu, maka kita perlu ubah bentuknya terlebih dahulu dengan menggunakan identitas :

[tex]cos\theta=sin\left ( \frac{\pi}{2}-\theta \right )[/tex]

[tex]sin(-\theta)=-sin\theta[/tex]

.

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)sin^2(\frac{\pi}{2}-x)}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)[sin-(x-\frac{\pi}{2})]^2}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)[-sin(x-\frac{\pi}{2})]^2}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)sin^2(x-\frac{\pi}{2})}{-2(x-\frac{\pi}{2})tan(x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi} \lim_{x \to \frac{\pi}{2}} (x-\pi)\times \lim_{x \to \frac{\pi}{2}} \frac{sin(x-\frac{\pi}{2})}{(x-\frac{\pi}{2})}\times\lim_{x \to \frac{\pi}{2}} \frac{sin(x-\frac{\pi}{2})}{tan(x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi}\times(\frac{\pi}{2}-\pi)\times1\times1[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi}\times-\frac{\pi}{2}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=1[/tex]

.

KESIMPULAN

[tex]Nilai~dari~\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}~adalah~\boldsymbol{1}.[/tex]

.

PELAJARI LEBIH LANJUTLimit trigonoemtri : https://brainly.co.id/tugas/32389794Limit trigonometri : https://brainly.co.id/tugas/30308496Limit trgonometri : https://brainly.co.id/tugas/30292421

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Limit Fungsi

Kode Kategorisasi: 11.2.8

Kata Kunci : limit, fungsi, trigonometri.


9. Soal tentang vektor kelas XII


p = (-2, -1, -3)
q = (3, -2, 1)

|p| = √[(-2)² + (-1)² + (-3)²]
    = √[4+1+9]
     = √14
|q| = √[(3)² + (-2)² + (1)²]
     = √[9+4+1]
      = √14
p · q = (-2)(3) + (-1)(-2) + (-3)(1)
        = -6 + 2 - 3
        = -7
misalkan α adalah sudut antar p dan q
besar sudut antara vektor p dan q adalah
p · q = |p| |q| . cos α
-7 = (√14)(√14) . cos α
-7 = 14 . cos α
cos α = -7/14
cos α = -1/2
α = 4π/6  ,  8π/6
α = 120° , 240°

10. Soal Bahasa Indonesia kelas XII No.2 dan 3


Jawaban:

Penjelasan:

1.struktur novel :

a. abstrak yaitu isi awal cerita

b. orientasi yaitu pengenalan cerita

c. komplikasi yaitu kejadian yang dikaitkan sebab akibatnya

d. evaluasi konflik mengarah yang lebih terarah

e. resolusi yaitu bagian novel yang menimbulka solusi

f. koda yaitu kesimpulan

2. kaitannta dalam kehidupan sehari-hari yaitu manusia terkadang bisa sukses dalam satu bidang saja, dalam arti dia menguasai atau sukses dengan hal yang dipunyai sedangkan tugas sebagai guru dxan suami tidak.

3. nilai moral

Jawaban:

Penjelasan:

1.struktur novel :

a. abstrak yaitu isi awal cerita

b. orientasi yaitu pengenalan cerita

c. komplikasi yaitu kejadian yang dikaitkan sebab akibatnya

d. evaluasi konflik mengarah yang lebih terarah

e. resolusi yaitu bagian novel yang menimbulka solusi

f. koda yaitu kesimpulan

2. kaitannta dalam kehidupan sehari-hari yaitu manusia terkadang bisa sukses dalam satu bidang saja, dalam arti dia menguasai atau sukses dengan hal yang dipunyai sedangkan tugas sebagai guru dxan suami tidak.


11. soal limit tak hinggakelas XII​


[tex]Hasil~dari~ \lim_{x \to \infty} \frac{5^x}{3^x+2^x}~adalah~\boldsymbol{E.\infty}[/tex]

PEMBAHASAN

Nilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :

[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]

Operasi pada limit adalah sebagai berikut :

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]

[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]

[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]

.

DIKETAHUI

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=[/tex]

.

DITANYA

Tentukan nilai limitnya.

.

PENYELESAIAN

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}= \lim_{x \to \infty} \frac{5^x}{3^x+2^x}\times\frac{\frac{1}{3^x}}{\frac{1}{3^x}}[/tex]

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}= \lim_{x \to \infty} \frac{\left ( \frac{5}{3} \right )^x}{1+\left ( \frac{2}{3} \right )^x}[/tex]

Perhatikan bahwa [tex]\frac{5}{3}>0[/tex] sehingga jika kita pangkatkan dengan nilai x yang besar hasilnya akan semakin menuju ∞.

Sedangkan [tex]\frac{2}{3}< 0[/tex] sehingga jika kita pangkatkan dengan nilai x yang besar hasilnya akan semakin menuju 0.

Maka :

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\lim_{x \to \infty} \frac{\left ( \frac{5}{3} \right )^x}{1+\left ( \frac{2}{3} \right )^x}[/tex]

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\frac{\lim_{x \to \infty} \left ( \frac{5}{3} \right )^x}{\lim_{x \to \infty} 1+\left ( \frac{2}{3} \right )^x}[/tex]

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\frac{\infty}{1+0}[/tex]

[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\infty[/tex]

KESIMPULAN

[tex]Hasil~dari~ \lim_{x \to \infty} \frac{5^x}{3^x+2^x}~adalah~\boldsymbol{E.\infty}[/tex]

.

PELAJARI LEBIH LANJUTLimit tak hingga : https://brainly.co.id/tugas/32409886Limit tak hingga : https://brainly.co.id/tugas/28942347Limit fungsi : https://brainly.co.id/tugas/30308496

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Limit Fungsi

Kode Kategorisasi: 11.2.8

Kata Kunci : limit, fungsi, tak hingga.


12. soal limitkelas XII​


[tex]Nilai~dari~\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}~adalah~\boldsymbol{\frac{3}{4}}.[/tex]

PEMBAHASAN

Nilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :

[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]

Operasi pada limit adalah sebagai berikut :

[tex]\lim_{x \to c} f(x)=f(c)[/tex]

[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]

[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]

[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]

[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]

Rumus untuk limit fungsi trigonometri :

[tex]\lim_{x \to 0} \frac{sinax}{bx}=\lim_{x \to 0} \frac{tanax}{bx}=\frac{a}{b}[/tex]

[tex]\lim_{x \to 0} \frac{ax}{sinbx}=\lim_{x \to 0} \frac{ax}{tanbx}=\frac{a}{b}[/tex]

[tex]\lim_{x \to a} \frac{sin(x-a)}{(x-a)}=\lim_{x \to a} \frac{tan(x-a)}{(x-a)}=1[/tex]

.

DIKETAHUI

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=[/tex]

.

DITANYA

Tentukan nilai limitnya.

.

PENYELESAIAN

Cek dengan substitusi langsung.

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{\left ( \frac{\pi}{4}-\frac{\pi}{4} \right )sin\left ( 3(\frac{\pi}{4})-\frac{3\pi}{4} \right )}{2(1-sin2(\frac{\pi}{4}))}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{0}{0}[/tex]

.

Karena substitusi langsung menghasilkan bentuk tak tentu, maka kita perlu ubah bentuknya terlebih dahulu dengan menggunakan identitas :

[tex]sin\theta=cos\left ( \frac{\pi}{2}-\theta \right )[/tex]

[tex]cos(-\theta)=cos\theta[/tex]

[tex]cos2\theta=1-2sin^2\theta[/tex]

.

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos[-(2x-\frac{\pi}{2})]}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos(2x-\frac{\pi}{2})}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos2(x-\frac{\pi}{4})}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-[1-2sin^2(x-\frac{\pi}{4})]}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{2sin^2(x-\frac{\pi}{4})}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{4}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )}{sin(x-\frac{\pi}{4})}\times\lim_{x \to \frac{\pi}{4}} \frac{sin3\left ( x-\frac{\pi}{4} \right )}{sin(x-\frac{\pi}{4})}[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{4}\times1\times3[/tex]

[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{3}{4}[/tex]

.

KESIMPULAN

[tex]Nilai~dari~\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}~adalah~\boldsymbol{\frac{3}{4}}.[/tex]

.

PELAJARI LEBIH LANJUTLimit trigonometri : https://brainly.co.id/tugas/30308496Limit trgonometri : https://brainly.co.id/tugas/30292421Limit trigonometri : https://brainly.co.id/tugas/30243881

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Limit Fungsi

Kode Kategorisasi: 11.2.8

Kata Kunci : limit, fungsi, trigonometri


13. tolong buatkan mind mapping tentang sejarah Indonesia kelas XII bab 1​


Jawaban:

maaf kalo salah y

itu setau aku

Penjelasan:

#semoga bermanfaat

#maaf klo salah


14. soal matematika kelas XII


Semoga membantu......

15. bahasa indonesia kelas XII halaman 75 nilai nilai yang terkandung dalam novel sejarah​


Jawaban:

Berikut adalah nilai-nilai yang dapat hadir dalam novel sejarah :

1. Nilai Budaya

2. Nilai Moral/Etika

3. Nilai Agama

4. Nilai Sosial

5. Nilai Estetis/Keindahan

Penjelasan:

Semoga membantu,


Video Terkait


Posting Komentar untuk "Soal Hots Sejarah Indonesia Kelas Xii"